Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 62

Answer

$\displaystyle \frac{1}{15}(3x-2)^{5}+C$

Work Step by Step

Shortcut formula: $\qquad $ $\displaystyle \int(ax+b)^{n}dx=\frac{1}{a}\frac{(ax+b)^{n+1}}{n+1}+C \quad($if $n\neq-1)$ $\displaystyle \int(3x-2)^{4}dx=\quad \left[\begin{array}{l} a=3\\ b=-2\\ n=4 \end{array}\right]$ Apply the formula: $=\displaystyle \frac{1}{3}\cdot\frac{(3x-2}{4+1}+C$ = $\displaystyle \frac{1}{15}(3x-2)^{5}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.