Answer
See below.
Work Step by Step
$\displaystyle \int e^{ax+b}dx=\qquad \left[\begin{array}{ll}
u=ax+b, & du=adx, \\
& dx=\frac{1}{a}du
\end{array}\right]$
$=\displaystyle \frac{1}{a}\int e^{u}du+C$
$=\displaystyle \frac{1}{a}e^{u}+C$
bring back the variable $x$
= $\displaystyle \frac{1}{a}e^{ax+b}+C$