Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 46

Answer

$2e^{x/2}-2e^{-x/2}+C$

Work Step by Step

$I=\displaystyle \int(e^{x/2}+e^{-x/2})dx=\int e^{x/2}dx+\int e^{-x/2}dx$ Substitutions: $\left[\begin{array}{lll} u=x/2 & & \\ du=dx/2 & \Rightarrow & dx=2du \end{array}\right],\quad \left[\begin{array}{lll} t=-x/2 & & \\ dt=-dx/2 & \Rightarrow & dx=-2dt \end{array}\right]$ $I=\displaystyle \int e^{u}(2du)+\int e^{t}(-2dt)$ $= 2e^{u}-2e^{t}+C$ bring back the variable $x$ = $2e^{x/2}-2e^{-x/2}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.