Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 38

Answer

$\int\frac{x}{\sqrt {x+1}}dx=\frac{2}{3}(x+1)^{\frac{3}{2}}-2(x+1)^{\frac{1}{2}}+C$

Work Step by Step

Substitution: $u=x+1$ $x=u-1$ $dx=du$ $\int\frac{x}{\sqrt {x+1}}dx=\int\frac{u-1}{u^{\frac{1}{2}}}du=\int(u^{\frac{1}{2}}-u^{-\frac{1}{2}})du=\frac{u^{\frac{3}{2}}}{\frac{3}{2}}-\frac{u^{\frac{1}{2}}}{\frac{1}{2}}+C=\frac{2}{3}(x+1)^{\frac{3}{2}}-2(x+1)^{\frac{1}{2}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.