Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 32

Answer

$\int\frac{x^3-x^2}{3x^4-4x^3}dx=\frac{1}{12}\ln|3x^4-4x^3|+C$

Work Step by Step

Substitution: $u=3x^4-4x^3$ $\frac{du}{dx}=12x^3-12x^2=12(x^3-x^2)$ $dx=\frac{1}{12(x^3-x^2)}du$ $\int\frac{x^3-x^2}{3x^4-4x^3}dx=\int\frac{x^3-x^2}{u}\frac{1}{12(x^3-x^2)}du=\int\frac{1}{12}\frac{1}{u}du=\frac{1}{12}\ln|u|+C=\frac{1}{12}\ln|3x^4-4x^3|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.