Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 18

Answer

$\int x(-x^2-1)^3dx=-\frac{1}{8}(-x^2-1)^4+C$

Work Step by Step

Substitution: $u=-x^2-1$ $\frac{du}{dx}=-2x$ $dx=-\frac{1}{2x}du$ $\int x(-x^2-1)^3dx=\int xu^3(-\frac{1}{2x}du)=\int-\frac{1}{2}u^3du=-\frac{1}{8}u^4+C=-\frac{1}{8}(-x^2-1)^4+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.