Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 33

Answer

$\int\frac{x^2+x^5}{\sqrt {2x^3+x^6-5}}dx=\frac{1}{3}\sqrt {2x^3+x^6-5}+C$

Work Step by Step

Substitution: $u=2x^3+x^6-5$ $\frac{du}{dx}=6x^2+6x^5=6(x^2+x^5)$ $dx=\frac{1}{6(x^2+x^5)}du$ $\int\frac{x^2+x^5}{\sqrt {2x^3+x^6-5}}dx=\int\frac{x^2+x^5}{u^{\frac{1}{2}}}\frac{1}{6(x^2+x^5)}du=\int\frac{1}{6}u^{-\frac{1}{2}}du=\frac{1}{6}\frac{u^{\frac{1}{2}}}{\frac{1}{2}}+C=\frac{1}{3}\sqrt {2x^3+x^6-5}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.