Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 14

Answer

$ -\displaystyle \frac{4.4e^{-3x+4}}{3}+C$

Work Step by Step

see Substitution RuIe, p.962: (1) let $u=-3x+4$ (2) $du=-3dx\displaystyle \ \ \Rightarrow\ \ dx=-\frac{du}{3}$ $(3)$ $\displaystyle \int 4.4e^{-3x+4}dx=\int 4.4e^{u}(-\frac{du}{3})$ ... constant multiple, exponential rules $=-\displaystyle \frac{4.4}{3}\cdot e^{u}+C$= ... bring back x $=-\displaystyle \frac{4.4e^{-3x+4}}{3}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.