Answer
$ -\displaystyle \frac{4.4e^{-3x+4}}{3}+C$
Work Step by Step
see Substitution RuIe, p.962:
(1)
let $u=-3x+4$
(2)
$du=-3dx\displaystyle \ \ \Rightarrow\ \ dx=-\frac{du}{3}$
$(3)$
$\displaystyle \int 4.4e^{-3x+4}dx=\int 4.4e^{u}(-\frac{du}{3})$
... constant multiple, exponential rules
$=-\displaystyle \frac{4.4}{3}\cdot e^{u}+C$= ... bring back x
$=-\displaystyle \frac{4.4e^{-3x+4}}{3}+C$