Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 20

Answer

$\int3x\sqrt {-x^2+1}dx=-(-x^2+1)^{\frac{3}{2}}+C$

Work Step by Step

Substitution: $u=-x^2+1$ $\frac{du}{dx}=-2x$ $dx=-\frac{1}{2x}du$ $\int3x\sqrt {-x^2+1}dx=\int3x\sqrt {u}(-\frac{1}{2x})du=\int-\frac{3}{2}u^{\frac{1}{2}}du=-\frac{3}{2}\frac{u^\frac{3}{2}}{\frac{3}{2}}+C=-u^\frac{3}{2}+C=-(-x^2+1)^{\frac{3}{2}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.