Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 40

Answer

$2.5\ln|2+e^{1.2x}|+C$

Work Step by Step

$I=\displaystyle \int\frac{3e^{1.2\kappa}}{2+e^{1.2x}}dx=\int\frac{1}{2+e^{1.2x}}(3e^{1.2\kappa}dx)$ Substitute: $\left[\begin{array}{llll} u & =2+e^{1.2x} & & \\ & & & \\ du & =1.2e^{1.2x}dx & \Rightarrow & 3e^{1.2x}dx=\dfrac{3du}{1.2} \end{array}\right]$ $I=\displaystyle \int\frac{1}{u}\cdot\frac{3du}{1.2}=\frac{3}{1.2}\int\frac{du}{u}$ $=2.5\displaystyle \int u^{-1}du$ special case of the power rule $(n=-1)$ $=2.5\ln|u|+C$ bring back the variable $x$ = $2.5\ln|2+e^{1.2x}|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.