Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 61

Answer

$ \displaystyle \frac{(2x+4)^{3}}{6}+C$

Work Step by Step

Shortcut formula: $\qquad $ $\displaystyle \int(ax+b)^{n}dx=\frac{1}{a}\frac{(ax+b)^{n+1}}{n+1}+C \quad($if $n\neq-1)$ $\displaystyle \int(2x+4)^{2}dx=\quad \left[\begin{array}{l} a=2\\ b=4 \end{array}\right]$ Apply the formula: $=\displaystyle \frac{1}{2}\cdot\frac{(2x+4)^{2+1}}{2+1}+C$ $= \displaystyle \frac{(2x+4)^{3}}{6}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.