Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 31

Answer

$\int\frac{-2x-1}{(x^2+x+1)^3}dx=\frac{1}{2(x^2+x+1)^2}+C$

Work Step by Step

Substitution: $u=x^2+x+1$ $\frac{du}{dx}=2x+1$ $dx=\frac{1}{2x+1}du$ $\int\frac{-2x-1}{(x^2+x+1)^3}dx=\int\frac{-(2x+1)}{u^3}\frac{1}{2x+1}du=\int-u^{-3}du=-\frac{u^{-2}}{-2}+C=\frac{1}{2(x^2+x+1)^2}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.