Answer
$\displaystyle \frac{1}{a}\ln|ax+b|+C$
Work Step by Step
$\displaystyle \int(ax+b)^{-1}dx=\quad \left[\begin{array}{ll}
u=ax+b, & du=adx, \\
& dx=\frac{1}{a}du
\end{array}\right]$
$=\displaystyle \frac{1}{a}\int u^{-1}du$
apply power rule for $n=-1$
$=\displaystyle \frac{1}{a}\ln|u|+C$
bring back the variable $x$
$=\displaystyle \frac{1}{a}\ln|ax+b|+C$