Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 54

Answer

$\displaystyle \frac{1}{a}\ln|ax+b|+C$

Work Step by Step

$\displaystyle \int(ax+b)^{-1}dx=\quad \left[\begin{array}{ll} u=ax+b, & du=adx, \\ & dx=\frac{1}{a}du \end{array}\right]$ $=\displaystyle \frac{1}{a}\int u^{-1}du$ apply power rule for $n=-1$ $=\displaystyle \frac{1}{a}\ln|u|+C$ bring back the variable $x$ $=\displaystyle \frac{1}{a}\ln|ax+b|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.