Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 22

Answer

$\int\frac{x^2}{(1+x^3)^{1.4}}dx=-\frac{5}{6(1+x^3)^{0.4}}+C$

Work Step by Step

Substitution: $u=1+x^3$ $\frac{du}{dx}=3x^2$ $dx=\frac{1}{3x^2}du$ $\int\frac{x^2}{(1+x^3)^{1.4}}dx=\int\frac{x^2}{u^{1.4}}\frac{1}{3x^2}du=\int\frac{1}{3}u^{-1.4}du=\frac{1}{3}\frac{u^{-0.4}}{-0.4}+C=-\frac{1}{1.2}(1+x^3)^{-0.4}+C=-\frac{5}{6(1+x^3)^{0.4}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.