Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 45

Answer

$\displaystyle \frac{1}{2}(e^{x}-e^{-x})+C$

Work Step by Step

$I= \displaystyle \int\frac{e^{x}+e^{-x}}{2}dx=\int\frac{e^{x}}{2}dx+\int\frac{e^{-x}}{2}dx$ $=\displaystyle \frac{1}{2}\int e^{x}dx+\frac{1}{2}\int e^{-x}dx$ first term: standard integral, $\displaystyle \int e^{x}dx=e^{x}+C$ second term: substitute $\left[\begin{array}{l} u=-x\\ du=-dx \end{array}\right]$ $=\displaystyle \frac{e^{x}}{2}+\frac{1}{2}\int u(-du)$ $=\displaystyle \frac{e^{x}}{2}-\frac{1}{2}\int udu$ $=\displaystyle \frac{e^{x}}{2}-\frac{e^{u}}{2}+C$ bring back the variable $x$ = $\displaystyle \frac{1}{2}(e^{x}-e^{-x})+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.