Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 34

Answer

$-\displaystyle \frac{1}{40}(5x^{4}-4x^{5})^{-4}+C$

Work Step by Step

$I=\displaystyle \int\frac{2(x^{3}-x^{4})}{(5x^{4}-4x^{5})^{5}}dx=\quad$ Substitute: $ \left[\begin{array}{llll} u & =5x^{4}-4x^{5} & & \\ du & =(20x^{3}-20x^{4})dx & & \\ & =20(x^{3}-x^{4}) & \Rightarrow & 2(x^{3}-x^{4})dx=\frac{du}{10} \end{array}\right]$ $I=\displaystyle \int\frac{1}{u^{5}}\cdot\frac{du}{10}=\frac{1}{10}\int u^{-5}du$ $=\displaystyle \frac{1}{10}\cdot\frac{u^{-4}}{-4}+C$ bring back the variable $x$ = $-\displaystyle \frac{1}{40}(5x^{4}-4x^{5})^{-4}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.