Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 39

Answer

$20\ln|1-e^{-0.05x}|+C$

Work Step by Step

$I=\displaystyle \int\frac{e^{-0.05x}}{1-e^{-0.05x}}dx$ Substitute: $\left[\begin{array}{llll} u & =1-e^{-0.05x} & & \\\\ du & =-(-0.05e^{-0.05x})dx & & \\ & =0.05e^{-0.05x}dx & \Rightarrow & e^{-0.05x}dx=\dfrac{du}{0.05} \end{array}\right]$ $I=\displaystyle \int\frac{1}{u}\cdot\frac{du}{0.05}$ $=\displaystyle \frac{1}{0.05}\int u^{-1}du$ special case of the power rule $(n=-1)$ $=20\ln|u|+C$ bring back the variable $x$ $=20\ln|1-e^{-0.05x}|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.