Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 52

Answer

$\displaystyle \frac{1}{2}(-e^{-x^{2}+1}+e^{2x})+C$

Work Step by Step

$\displaystyle \int(xe^{-x^{2}+1}+e^{2x})dx=\int xe^{-x^{2}+1}dx+\int e^{2x}dx$ Substitutions: $\left[\begin{array}{ll} u=-x^{2}+1, & du=-2xdx\\ & xdx=-\frac{1}{2}du \end{array}\right],\quad\left[\begin{array}{ll} t=2x, & dt=2dx\\ & dx=dt/2\\ & \end{array}\right]$ $=-\displaystyle \frac{1}{2}\int e^{u}du+\frac{1}{2}\int e^{t}dt$ $=\displaystyle \frac{1}{2}(-e^{u}+e^{t})+C$ bring back the variable $x$ = $\displaystyle \frac{1}{2}(-e^{-x^{2}+1}+e^{2x})+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.