Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 21

Answer

$\int\frac{x}{(x^2+1)^{1.3}}dx=-\frac{5}{3(x^2+1)^{0.3}}+C$

Work Step by Step

Substitution: $u=x^2+1$ $\frac{du}{dx}=2x$ $dx=\frac{1}{2x}du$ $\int\frac{x}{(x^2+1)^{1.3}}dx=\int\frac{x}{u^{1.3}}\frac{1}{2x}du=\int\frac{1}{2}u^{-1.3}du=\frac{1}{2}\frac{u^{-0.3}}{-0.3}+C=-\frac{1}{0.6}(x^2+1)^{-0.3}+C=-\frac{5}{3(x^2+1)^{0.3}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.