Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 42

Answer

$-e^{2/x}+C$

Work Step by Step

$I=\displaystyle \int\frac{2e^{2/x}}{x^{2}}dx$ Substitute: $\left[\begin{array}{llll} u & =\dfrac{2}{x}=2x^{-1} & & \\ & & & \\ du & =-2x^{-2}dx & \Rightarrow & \dfrac{2dx}{x^{2}}=-du \end{array}\right]$ $I=\displaystyle \int(e^{2/x})(\frac{2dx}{x^{2}})=$ apply the substitution $=\displaystyle \int e^{u}(-du)$ $=-e^{u}+C$ bring back the variable $x$ = $-e^{2/x}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.