Answer
$\int(1+9.3e^{3.1x-2})dx=x+3e^{3.1x-2}+C$
Work Step by Step
Substitution:
$u=3.1x-2$
$\frac{du}{dx}=3.1$
$dx=\frac{1}{3.1}du$
$\int(1+9.3e^{3.1x-2})dx=\int(1+9.3e^u)\frac{1}{3.1}du=\int(\frac{1}{3.1}+3e^u)du=\frac{10}{31}u+3e^u+C=\frac{10}{31}(3.1x-2)+3e^{3.1x-2}+C=x-\frac{20}{31}+3e^{3.1x-2}+C=x+3e^{3.1x-2}+C$