Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 10

Answer

$ \displaystyle \frac{e^{(x-1)^{3}}}{3}+C$

Work Step by Step

see Substitution RuIe, p.962: 1. Write $u$ a{\it s} a function of x. 2. Take the derivative $du/dx$ and solve for the quantity $dx$ in terms of $du$. 3. Use the expression you obtain in step 2 to substitute for $dx$ in the given integral and substitute $u$ for its defining expression. ---------------- (1) Given $\quad u=(x-1)^{3}$ (2) (chain rule) $\quad du=3(x-1)^{2}\cdot 1dx\ \ \Rightarrow$ $ \displaystyle \ \ (x-1)^{2}dx=\frac{du}{3}$ $(dx=\displaystyle \frac{du}{3(x-1)^{2}})$ $(3)$ $\displaystyle \int(x-1)^{2}e^{(x-1)^{3}}dx$ = $\displaystyle \int e^{(x+1)^{3}}[(x-1)^{2}dx]$ $=\displaystyle \int e^{u}(\frac{du}{3})$= ... constant multiple $=\displaystyle \frac{1}{3}\int e^{u}du$ $=\displaystyle \frac{e^{u}}{3}+C$= ... bring back x $= \displaystyle \frac{e^{(x-1)^{3}}}{3}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.