Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 49

Answer

$-\displaystyle \frac{1}{6}(1-e^{3x-1})|1-e^{3x-1}|+C$

Work Step by Step

In the table "Shortcut RuIe: lntegrals of Expressions Involving $(\mathrm{a}x+b)$", our target is $\displaystyle \int|ax+b|dx =\displaystyle \frac{1}{2a}(ax+b)|ax+b|+C$ Substitute: $\left[\begin{array}{ll} u=e^{3x-1}, & du=(e^{3x-1}\cdot 3)dx \\ & e^{3x-1}dx=du/3 \end{array}\right]$ $\displaystyle \int e^{3x-1}|1-e^{3x-1}|dx=\frac{1}{3}\int|1-u|du$ we have our target integral, $a=-1, b=1$ $=\displaystyle \frac{1}{3}(\frac{1}{2(-1)}(1-u)|1-u|)+C$ bring back the variable $x$ = $-\displaystyle \frac{1}{6}(1-e^{3x-1})|1-e^{3x-1}|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.