Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 36

Answer

$\int x(x-2)^{\frac{1}{3}}dx=\frac{3}{7}(x-2)^{\frac{7}{3}}+\frac{3}{2}(x-2)^{\frac{4}{3}}+C$

Work Step by Step

Substitution: $u=x-2$ $x=u+2$ $dx=du$ $\int x(x-2)^{\frac{1}{3}}dx=\int (u+2)u^{\frac{1}{3}}du=\int (u^{\frac{4}{3}}+2u^{\frac{1}{3}})du=\frac{u^{\frac{7}{3}}}{\frac{7}{3}}+2\frac{u^{\frac{4}{3}}}{\frac{4}{3}}=\frac{3}{7}(x-2)^{\frac{7}{3}}+\frac{3}{2}(x-2)^{\frac{4}{3}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.