Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 19

Answer

$\int 2x\sqrt {3x^2-1}dx=\frac{2}{9}(3x^2-1)^{\frac{3}{2}}+C$

Work Step by Step

Substitution: $u=3x^2-1$ $\frac{du}{dx}=6x$ $dx=\frac{1}{6x}du$ $\int 2x\sqrt {3x^2-1}dx=\int2x\sqrt u\frac{1}{6x}du=\int\frac{1}{3}u^{\frac{1}{2}}du=\frac{1}{3}\frac{u^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(3x^2-1)^{\frac{3}{2}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.