Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 30

Answer

$\int(2x-1)e^{2x^2-2x}dx=\frac{1}{2}e^{2x^2-2x}+C$

Work Step by Step

Substitution: $u=2x^2-2x$ $\frac{du}{dx}=4x-2=2(2x-1)$ $dx=\frac{1}{2(2x-1)}du$ $\int(2x-1)e^{2x^2-2x}dx=\int(2x-1)e^{u}\frac{1}{2(2x-1)}du=\int\frac{1}{2}e^udu=\frac{1}{2}e^u+C=\frac{1}{2}e^{2x^2-2x}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.