Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 43

Answer

$ -\displaystyle \frac{1}{8}\cdot(4+1/x^{2})^{4}$

Work Step by Step

$I=\displaystyle \int\frac{(4+1/x^{2})^{3}}{x^{3}}dx$ We need a substitution such that $du$ has $x^{3}$ in the denominator. Substitute: $\left[\begin{array}{llll} u & =4+\dfrac{1}{x^{2}}=4+x^{-2} & & \\ & & & \\ du & =-2x^{-3}dx =-\dfrac{2dx}{x^{3}} & \Rightarrow & \dfrac{dx}{x^{3}}=-\dfrac{du}{2} \end{array}\right]$ $I=\displaystyle \int\frac{(4+1/x^{2})^{3}}{x^{3}}dx=\int[(4+1/x^{2})^{3}](\frac{dx}{x^{3}})$ apply the substitution $I=\displaystyle \int u^{3}(-\frac{du}{2})=-\frac{1}{2}\int u^{3}du$ power rule $=-\displaystyle \frac{1}{2}\cdot\frac{u^{4}}{4}+C$ bring back the variable $x$ =$ -\displaystyle \frac{1}{8}\cdot(4+1/x^{2})^{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.