Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 50

Answer

$-\displaystyle \frac{1}{2}(e^{-x-1}-1)|e^{-x-1}-1|+C$

Work Step by Step

In the table "Shortcut RuIe: lntegrals of Expressions Involving $(\mathrm{a}x+b)$", our target is $\displaystyle \int|ax+b|dx =\displaystyle \frac{1}{2a}(ax+b)|ax+b|+C$ Substitute: $\left[\begin{array}{ll} u=e^{-x-1}, & du=(e^{-x-1}\cdot(-1))dx \\ & e^{-x-1}dx=-du \end{array}\right]$ $\displaystyle \int|e^{-x-1}-1|(e^{-x-1})dx= -\int|u-1|du$ we have our target integral, $a=1, b=-1$ $=-(\displaystyle \frac{1}{2(1)}(u-1)|u-1|+C$ bring back the variable $x$ = $-\displaystyle \frac{1}{2}(e^{-x-1}-1)|e^{-x-1}-1|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.