Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 53

Answer

See below.

Work Step by Step

$\displaystyle \int(ax+b)^{n}dx=\quad \left[\begin{array}{ll} u=ax+b, & du=adx, \\ & dx=\frac{1}{a}du \end{array}\right]$ $=\displaystyle \frac{1}{a}\int u^{n}du$ apply power rule for $n\neq-1$ $=\displaystyle \frac{1}{a}\cdot\frac{u^{n+1}}{n+1}+C\qquad (n\neq-1)$ bring back the variable $x$ = $ \displaystyle \frac{(ax+b)^{n+1}}{a(n+1)}+C,\qquad (n\neq-1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.