Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 37

Answer

$\int 2x\sqrt {x+1}dx=\frac{4}{5}(x+1)^{\frac{5}{2}}-\frac{4}{3}(x+1)^{\frac{3}{2}}+C$

Work Step by Step

Substitution: $u=x+1$ $x=u-1$ $dx=du$ $\int 2x\sqrt {x+1}dx=\int2(u-1)u^{\frac{1}{2}}du=\int2(u^{\frac{3}{2}}-u^{\frac{1}{2}})du=2(\frac{u^{\frac{5}{2}}}{\frac{5}{2}}-\frac{u^{\frac{3}{2}}}{\frac{3}{2}})+C=\frac{4}{5}(x+1)^{\frac{5}{2}}-\frac{4}{3}(x+1)^{\frac{3}{2}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.