Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 24

Answer

$ \displaystyle \frac{(4x^{3}+1)|4x^{3}+1|}{24}+C$

Work Step by Step

See table Shortcuts: Integrals of Expressions Involving $(ax+b)$ Target: $\displaystyle \int|ax+b|dx =\displaystyle \frac{1}{2a}(ax+b)|ax+b|+C$ $\displaystyle \mathrm{I}=\int x^{2}|4x^{3}+1|dx$ Substitute $\left[\begin{array}{lll} u=x^{3} & & \\ du=3x^{2}dx, & \Rightarrow & x^{2}dx=\frac{du}{3} \end{array}\right]$ $I=\displaystyle \int|4u+1|\frac{du}{3}=\frac{1}{3}\int|4u+1|du$ we have the target integral,$\quad a=4, b=1$ $=\displaystyle \frac{1}{3}\cdot\frac{1}{2(4)}(4u+1)|4u+1|+C$ bring back the variable $x$ =$ \displaystyle \frac{(4x^{3}+1)|4x^{3}+1|}{24}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.