Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 28

Answer

$\int xe^{2x^2-1}dx=\frac{1}{4}e^{2x^2-1}+C$

Work Step by Step

Substitution: $u=2x^2-1$ $\frac{du}{dx}=4x$ $dx=\frac{1}{4x}du$ $\int xe^{2x^2-1}dx=\int xe^u(\frac{1}{4x})du=\int\frac{1}{4}e^udu=\frac{1}{4}e^u+C=\frac{1}{4}e^{2x^2-1}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.