Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 55

Answer

See below.

Work Step by Step

Our substitution will be based on the fact that $\displaystyle \frac{1}{2}x|x|$ is an antiderivative of $|x|$. Check: $\displaystyle \frac{d}{dx}[ \displaystyle \frac{1}{2}x\cdot|x|]=\frac{1}{2}\{\frac{d}{dx}[x]\cdot|x|+x\cdot\frac{d}{dx}[\ |x|\ ]\}\qquad$ product rule $=\displaystyle \frac{1}{2}( |x|+x\cdot\frac{|x|}{x})\qquad $ see section 11.4, $\displaystyle \frac{d}{dx}[\ |x|\ ]$ $=\displaystyle \frac{1}{2}(2|x|)$ $=|x|$ so, $\displaystyle \int|x|dx= \displaystyle \frac{1}{2}x|x|+C.$ $\displaystyle \int|ax+b|dx=\qquad\quad \left[\begin{array}{ll} u=ax+b, & du=adx, \\ & dx=\frac{1}{a}du \end{array}\right]$ $=\displaystyle \frac{1}{a}\int|u|du$ $=\displaystyle \frac{1}{a}(\frac{1}{2}u|u|)+C$ bring back the variable $x$ $=\displaystyle \frac{1}{2a}(ax+b)|ax+b|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.