Answer
$\int(3.2-4e^{1.2x-3})dx=3.2x-\frac{10}{3}e^{1.2x-3}+C$
Work Step by Step
Substitution:
$u=1.2x-3$
$\frac{du}{dx}=1.2$
$dx=\frac{1}{1.2}du$
$\int(3.2-4e^{1.2x-3})dx=\int(3.2-4e^u)\frac{1}{1.2}du=\frac{3.2}{1.2}u-\frac{4}{1.2}e^u+C=\frac{8}{3}(1.2x-3)-\frac{10}{3}e^{1.2x-3}+C=3.2x-8-\frac{10}{3}e^{1.2x-3}+C=3.2x-\frac{10}{3}e^{1.2x-3}+C$