Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 26

Answer

$\int(3.2-4e^{1.2x-3})dx=3.2x-\frac{10}{3}e^{1.2x-3}+C$

Work Step by Step

Substitution: $u=1.2x-3$ $\frac{du}{dx}=1.2$ $dx=\frac{1}{1.2}du$ $\int(3.2-4e^{1.2x-3})dx=\int(3.2-4e^u)\frac{1}{1.2}du=\frac{3.2}{1.2}u-\frac{4}{1.2}e^u+C=\frac{8}{3}(1.2x-3)-\frac{10}{3}e^{1.2x-3}+C=3.2x-8-\frac{10}{3}e^{1.2x-3}+C=3.2x-\frac{10}{3}e^{1.2x-3}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.