Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 51

Answer

$\displaystyle \frac{1}{2}(e^{2x^{2}-2x}+e^{x^{2}})+C$

Work Step by Step

$\displaystyle \int[(2x-1)e^{2x^{2}-2x}+xe^{x^{2}}]dx=\int(2x-1)e^{2x^{2}-2x}dx+\int xe^{x^{2}}dx$ Substitutions: $\left[\begin{array}{ll} u=2x^{2}-2x, & du=(4x-2)dx\\ & du=2(2x-1)dx\\ & (2x-1)dx=du/2 \end{array}\right],\quad\left[\begin{array}{ll} t=x^{2}, & dt=2xdx\\ & xdx=dt/2\\ & \end{array}\right]$ $ =\displaystyle \frac{1}{2}\int e^{u}du+\frac{1}{2}\int e^{t}dt$ $=\displaystyle \frac{1}{2}(e^{u}+e^{t})+C$ bring back the variable $x$ = $\displaystyle \frac{1}{2}(e^{2x^{2}-2x}+e^{x^{2}})+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.