Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 971: 29

Answer

$\int(x+1)e^{-(x^2+2x)}dx=-\frac{1}{2}e^{-(x^2+2x)}+C$

Work Step by Step

Substitution: $u=-(x^2+2x)$ $\frac{du}{dx}=-(2x+2)=-2(x+1)$ $dx=-\frac{1}{2(x+1)}du$ $\int(x+1)e^{-(x^2+2x)}dx=\int(x+1)e^u(-\frac{1}{2(x+1)}du)=\int-\frac{1}{2}e^udu=-\frac{1}{2}e^u+C=-\frac{1}{2}e^{-(x^2+2x)}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.