Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 9

Answer

$$\int_{0}^{x^{3}} y e^{-y / x} d y=x^{2}\left(1-e^{-x^{2}}-x^{2} e^{-x^{2}}\right)$$

Work Step by Step

Given $$\int_{0}^{x^{3}} y e^{-y / x} d y$$ by using integration by partition, let $$u=y, d u=d y, \ \ \ \ \ \ \ d v=e^{-y / x} d y, v=-x e^{-y / x}$$ so, we get \begin{align} \int_{0}^{x^{3}} y e^{-y / x} d y=&\left[-x y e^{-y / x}\right]_{0}^{x^{3}}+x \int_{0}^{x^{3}} e^{-y / x} d y\\ &=-x^{4} e^{-x^{2}}-\left[x^{2} e^{-y / x}\right]_{0}^{3}\\ &=x^{2}\left(1-e^{-x^{2}}-x^{2} e^{-x^{2}}\right) \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.