Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 8

Answer

$$\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d x =\frac{2 \sqrt{1-y^{2}}}{3}\left(1+2 y^{2}\right)$$

Work Step by Step

Given $$\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d x$$ So, \begin{align} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d x&=\left[\frac{1}{3} x^{3}+y^{2} x\right]_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}}\\ &=2\left[\frac{1}{3}\left(1-y^{2}\right)^{3 / 2}+y^{2}\left(1-y^{2}\right)^{1 / 2}\right]\\ &=\frac{2 \sqrt{1-y^{2}}}{3}\left(1+2 y^{2}\right) \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.