Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 21

Answer

$$\int_{-1}^{5} \int_{0}^{3 y}\left(3+x^{2}+\frac{1}{4} y^{2}\right) d x d y=1629$$

Work Step by Step

Given$$\int_{-1}^{5} \int_{0}^{3 y}\left(3+x^{2}+\frac{1}{4} y^{2}\right) d x d y$$ So, we get \begin{align} &\int_{-1}^{5} \int_{0}^{3 y}\left(3+x^{2}+\frac{1}{4} y^{2}\right) d x d y\\ &=\int_{-1}^{5}\left(3 x+\frac{x^{3}}{3}+\frac{1}{4} x y^{2}\right]_{0}^{3 y} d y\\ &=\int_{-1}^{5}\left[9 y+9 y^{3}+\frac{3}{4} y^{3}\right] d y\\ &=\int_{-1}^{5}\left[9 y+\frac{39}{4} y^{3}\right] d y\\ &=\left[\frac{9}{2} y^{2}+\frac{39}{16} y^{4}\right]_{-1}^{5}\\ &=\left(\frac{9}{2}(25)+\frac{39}{16}(625)\right)-\left(\frac{9}{2}+\frac{39}{16}\right)\\ &=1629 \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.