Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 14

Answer

$$\int_{-1}^2\int_{1}^3(x+y^2)\hspace{0.5mm}dxdy=18$$

Work Step by Step

We will begin with integral with respect to x: $\int_{-1}^2\int_{1}^3(x+y^2)\hspace{0.5mm}dxdy=\int_{-1}^2\left(\frac{x^2}{2}+y^2x\right)\bigg\vert_1^3dy$ $=\int_{-1}^2\left(\left(\frac{9}{2}+3y^2\right)-\left(\frac{1}{2}+y^2\right)\right)dy$ $=\int_{-1}^2\left(\frac{9}{2}+3y^2-\frac{1}{2}-y^2\right)dy=\int_{-1}^2\left(2y^2+4\right)dy$ $=\left(\frac{2}{3}y^3+4y\right)\bigg\vert_{-1}^2=\left (\frac{16}{3}+8\right)-\left(-\frac{2}{3}-4\right)$ $=\frac{16}{3}+8+\frac{2}{3}+4=\frac{18}{3}+12=18$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.