Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 10

Answer

$$ \int_{y}^{\pi / 2} \sin ^{3} x \cos y \ d x=\cos^2 y-\frac{1}{3} \cos ^{4}y$$

Work Step by Step

Given $$ \int_{y}^{\pi / 2} \sin ^{3} x \cos y d x $$ So,\begin{aligned} \int_{y}^{\pi / 2} \sin ^{3} x \cos y dx &= \int_{y}^{\pi / 2} \sin ^{2}x \sin x \cos y d x, \ \ \ \small (sin^2 x=1-cos^2x )\\ &=\int_{y}^{\pi / 2}\left(1-\cos ^{2} x\right) \sin x \cos y d x \\ &=\cos y \int_{y}^{\pi / 2}\left( \sin x -\sin x \cos ^{2} x\right) d x \\ &=\cos y \left[ -\cos x+\frac{1}{3} \cos ^{3} x \right]_{y}^{\pi / 2}\\ &=\cos y \left(\cos y-\frac{1}{3} \cos ^{3} y\right) \\ &=\cos^2 y-\frac{1}{3} \cos ^{4}y \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.