Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 26

Answer

$$\int_{1}^{3} \int_{0}^{y} \frac{4}{x^{2}+y^{2}} d x d y =\pi \ln 3$$

Work Step by Step

Given$$\int_{1}^{3} \int_{0}^{y} \frac{4}{x^{2}+y^{2}} d x d y$$ So, we have \begin{align} \int_{1}^{3} \int_{0}^{y} \frac{4}{x^{2}+y^{2}} d x d y&= \int_{1}^{3} \int_{0}^{y} \frac{4}{y^{2}((\frac{x }{y })^2+1)} d x d y \end{align} Since $$\int\frac{d u}{1+u^{2}} =\arctan (u)$$ So, we get \begin{align} \int_{1}^{3} \int_{0}^{y} \frac{4}{x^{2}+y^{2}} d x d y& =\int_{1}^{3}\left[\frac{4}{y} \arctan \left(\frac{x}{y}\right)\right]_{0}^{y} d y\\ &=\int_{1}^{3} \frac{4}{y} \left( \arctan(1)-\arctan(0) \right)d y\\ &=\int_{1}^{3} \frac{4}{y}\left(\frac{\pi}{4}\right) d y\\ &=\int_{1}^{3} \frac{\pi}{y} d y\\ &=[\pi \ln y]_{1}^{3} \ \ \ \ \ \left(since \int \frac{1}{y} d y=\ln y \right)\\ &=\pi \left(\ln 3-\ln1\right)\\ &=\pi \ln 3 \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.