Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 39

Answer

$$A=\frac{8}{3}$$

Work Step by Step

Given $$\sqrt{x}+ \sqrt y=2, \quad x=0, \quad y=0$$ First, we get the intersections points of the curves at $x=0 \Rightarrow \sqrt y=2 \Rightarrow y=4$ at $y=0 \Rightarrow \sqrt x=2 \Rightarrow x=4$ Secondly by taking vertical slices, consider the following integration \begin{align} A&=\int_{x=0}^{x=4} \int_{y=0}^{y=(2-\sqrt{x})^{2}} d y d x\\ &=\int_{x=0}^{x=4}[y]_{0}^{(2-\sqrt{x})^{2}} d x\\ &=\int_{x=0}^{x=4}(4-4 \sqrt{x}+x) d x\\ &=\left[4 x-\frac{8}{3} x \sqrt{x}+\frac{x^{2}}{2}\right]_{0}^{4}\\ &=\frac{8}{3} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.