Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 23

Answer

$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x d y=\frac{2}{3}$$

Work Step by Step

Given $$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x d y=$$ So, we get \begin{align} \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x d y& =\int_{0}^{1}\left[\frac{1}{2} x^{2}+x y\right]_{0}^{\sqrt{1-y^{2}}} d y\\&=\int_{0}^{1}\left[\frac{1}{2}\left(1-y^{2}\right)+y \sqrt{1-y^{2}}\right] d y\\ &=\left[\frac{1}{2} y-\frac{1}{6} y^{3}-\frac{1}{2}\left(\frac{2}{3}\right)\left(1-y^{2}\right)^{3 / 2}\right]_{0}^{1}\\ &=\frac{2}{3} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.