Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 56

Answer

\[4\pi \]

Work Step by Step

\[\begin{align} & \int_{-2}^{2}{\int_{-\sqrt{4-{{x}^{2}}}}^{\sqrt{4-{{x}^{2}}}}{dy}dx} \\ & \text{Find the integral} \\ & =\int_{-2}^{2}{\left[ y \right]_{-\sqrt{4-{{x}^{2}}}}^{\sqrt{4-{{x}^{2}}}}dx} \\ & =\int_{-2}^{2}{\left[ \sqrt{4-{{x}^{2}}}+\sqrt{4-{{x}^{2}}} \right]dx} \\ & =\int_{-2}^{2}{2\sqrt{4-{{x}^{2}}}dx} \\ & \text{By tables }\int{\sqrt{{{a}^{2}}-{{u}^{2}}}du}=\frac{1}{2}\left( u\sqrt{{{a}^{2}}-{{u}^{2}}}+{{a}^{2}}{{\sin }^{-1}}\left( \frac{u}{a} \right) \right)+C \\ & =\left[ x\sqrt{4-{{x}^{2}}}+4{{\sin }^{-1}}\left( \frac{x}{2} \right) \right]_{-2}^{2} \\ & =\left[ 2\sqrt{4-{{2}^{2}}}+4{{\sin }^{-1}}\left( \frac{2}{2} \right) \right]-\left[ -2\sqrt{4-{{\left( -2 \right)}^{2}}}+4{{\sin }^{-1}}\left( \frac{-2}{2} \right) \right] \\ & =4{{\sin }^{-1}}\left( \frac{2}{2} \right)-4{{\sin }^{-1}}\left( \frac{-2}{2} \right) \\ & =4\pi \\ & \text{Using the graph to switch the order of integration} \\ & \int_{-2}^{2}{\int_{-\sqrt{4-{{y}^{2}}}}^{\sqrt{4-{{y}^{2}}}}{dy}dx} \\ & \text{Find the integral} \\ & =\int_{-2}^{2}{\left[ x \right]_{-\sqrt{4-{{y}^{2}}}}^{\sqrt{4-{{y}^{2}}}}dx} \\ & =\int_{-2}^{2}{2\sqrt{4-{{y}^{2}}}dx} \\ & \text{By symmetry with the integral }\int_{-2}^{2}{2\sqrt{4-{{x}^{2}}}dx} \\ & \int_{-2}^{2}{2\sqrt{4-{{y}^{2}}}dx}=4\pi \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.