Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 29

Answer

$$\int_{0}^{\pi / 2} \int_{0}^{\sin \theta} \theta \ r \ d r \ d \theta=\frac{\pi^{2}}{32}+\frac{1}{8}$$

Work Step by Step

Given$$\int_{0}^{\pi / 2} \int_{0}^{\sin \theta} \theta \ r \ d r \ d \theta$$ so, we have \begin{aligned} I=& \int_{0}^{\pi / 2} \int_{0}^{\sin \theta} \theta \ r \ d r \ d \theta \\&=\int_{0}^{\pi / 2}\left[\theta \frac{r^{2}}{2}\right]_{0}^{\sin \theta} d \theta\\\ &=\int_{0}^{\pi / 2} \frac{1}{2} \theta \sin ^{2} \theta \ d \theta \\ \end{aligned} Since $$ \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) $$ we get $$I=\frac{1}{4} \int_{0}^{\pi / 2} \theta (1- \cos 2 \theta) d \theta\\$$ By using integration by partition let $$u=\theta, \ \ \ \ \ du=d\theta$$ $$dv=1- \cos 2 \theta, \ \ \ \ \ v=\theta-\frac{1}{2}\sin 2 \theta$$ so, we get \begin{aligned} I&=\frac{1}{4} uv |_0^{\pi / 2}-\frac{1}{4} \int_{0}^{\pi / 2} v \ du \\ &=\frac{1}{4}\left[\theta (\theta-\frac{1}{2}\sin 2 \theta)\right]_{0}^{\pi / 2}-\frac{1}{4}\int_{0}^{\pi / 2} (\theta - \frac{1}{2} \sin 2 \theta) d \theta\\ &=\frac{\pi^2}{16}-\frac{1}{4} \left[ \frac{\theta^2}{2} + \frac{1}{4}\cos 2 \theta \right]_{0}^{\pi / 2}\\ &=\frac{\pi^2}{16}-\frac{1}{4} \left[ \frac{\pi^2}{8} + \frac{1}{4}\cos \pi-(0 + \frac{1}{4}\cos 0 ) \right] \\ &=\frac{\pi^2}{16}-\frac{1}{4} \left[ \frac{\pi^2}{8} - \frac{1}{2} \right] \\ &=\frac{\pi^{2}}{32}+\frac{1}{8} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.