Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 31

Answer

$$\int_{1}^{\infty} \int_{0}^{1 / x} y \ \ d y \ \ d x=\frac{1}{2}$$

Work Step by Step

Given $$\int_{1}^{\infty} \int_{0}^{1 / x} y \ \ d y \ \ d x$$ So, we get \begin{align} \int_{1}^{\infty} \int_{0}^{1 / x} y \ \ d y \ \ d x&=\int_{1}^{\infty}\left[\frac{y^{2}}{2}\right]_{0}^{1 / x} d x\\ &=\frac{1}{2} \int_{1}^{\infty}\left( (\frac{1}{x})^{2}-0 \right)d x\\ &=\frac{1}{2} \int_{1}^{\infty} \frac{1}{x^{2}} d x\\ &=\frac{1}{2}\left[\frac{x^{-2+1}}{-1}\right]_{1}^{\infty}\\ &=\left[-\frac{1}{2 x}\right]_{1}^{\infty}\\ &=0+\frac{1}{2} \\ &=\frac{1}{2} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.