Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 40

Answer

$$A=\frac{16}{5}$$

Work Step by Step

Given $$y=x^{3 / 2}, \quad y=2 x$$ First, we get the intersections points of the curves $y=x^{3 / 2}=2 x \ \Rightarrow x^{3 }=4 x^2\ \Rightarrow x^{2 }(x-4 )=0$ $\Rightarrow x =0\Rightarrow y =0$ and $\Rightarrow x =4\Rightarrow y =8$ Secondly by taking vertical slices, consider the following integration \begin{aligned} A &=\int_{x=0}^{x=4} \int_{y=x^{3 / 2}}^{y=2 x} d y d x \\ &=\int_{x=0}^{x=4}[y]_{x^{3 / 2}}^{2 x} d x\\ &=\int_{x=0}^{x=4}\left(2 x-x^{3 / 2}\right) d x \\ &=\left[x^{2}-\frac{2}{5} x^{5 / 2}\right]_{0}^{4}\\ &=16-\frac{2}{5}(32)-0\\ &=\frac{16}{5} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.