Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 55

Answer

\[\frac{\pi }{2}\]

Work Step by Step

\[\begin{align} & \int_{0}^{1}{\int_{-\sqrt{1-{{y}^{2}}}}^{\sqrt{1-{{y}^{2}}}}{dx}dy} \\ & \text{Find the integral} \\ & =\int_{0}^{1}{\left[ x \right]_{-\sqrt{1-{{y}^{2}}}}^{\sqrt{1-{{y}^{2}}}}dy} \\ & =\int_{0}^{1}{2\sqrt{1-{{y}^{2}}}dy} \\ & \text{By tables }\int{\sqrt{{{a}^{2}}-{{u}^{2}}}du}=\frac{1}{2}\left( u\sqrt{{{a}^{2}}-{{u}^{2}}}+{{a}^{2}}{{\sin }^{-1}}\left( \frac{u}{a} \right) \right)+C \\ & =2\left[ {{\sin }^{-1}}y \right]_{0}^{1} \\ & =\left[ y\sqrt{1-{{y}^{2}}}+{{\sin }^{-1}}\left( y \right) \right] \\ & =\sqrt{1-{{1}^{2}}}+{{\sin }^{-1}}\left( 1 \right) \\ & =\frac{1}{2}\pi \\ & \text{Using the graph to switch the order of integration} \\ & \int_{-1}^{1}{\int_{0}^{\sqrt{1-{{x}^{2}}}}{dy}dx} \\ & \text{Find the integral} \\ & =\int_{-1}^{1}{\left[ y \right]_{0}^{\sqrt{1-{{x}^{2}}}}dx} \\ & =\int_{-1}^{1}{\sqrt{1-{{x}^{2}}}dx} \\ & =\frac{1}{2}\left( x\sqrt{1-{{x}^{2}}}+{{\sin }^{-1}}\left( \frac{x}{a} \right) \right)+C \\ & =\frac{1}{2}\left[ \sqrt{1-{{1}^{2}}}+{{\sin }^{-1}}\left( 1 \right) \right]-\frac{1}{2}\left[ -1\sqrt{1-{{\left( -1 \right)}^{2}}}+{{\sin }^{-1}}\left( -1 \right) \right] \\ & =\frac{\pi }{4}-\left( -\frac{\pi }{4} \right) \\ & =\frac{\pi }{2} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.