Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.1 Exercises - Page 972: 27

Answer

$$\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r d r d \theta=\frac{\pi}{2}$$

Work Step by Step

Given$$\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r d r d \theta$$ So, we have \begin{align} \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r d r d \theta& =\int_{0}^{\pi / 2}\left[\frac{r^{2}}{2}\right]_{0}^{2 \cos \theta} d \theta\\ &=\int_{0}^{\pi / 2} 2 \cos ^{2} \theta d \theta \end{align} Since $$\cos ^{2}\theta =\frac{1}{2}(1+\cos 2\theta)$$ So, we get \begin{align} \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r d r d \theta & =\int_{0}^{\pi / 2} (1+\cos 2\theta) d \theta\\ &=\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 2}\\ &=\frac{\pi}{2} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.